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The shell model approach to reaction theory (SMART) [1]

provides an exact expression for nucleon reaction amplitudes in

terms of matrix elements between A-nucleon eigenstates of a
model Hamiltonian H_. This theory rests on an expression for
the reaction matrix“element [2] derived from a formulation of

reaction theory in which the scattering states are not asymptotic

“solutions of the exact Schrodinger equation. 1In this respect
SMART differs from superficially similar approaches [3] which
arg based on approximating nuclear states of shell model wave
functions in some adaptation of the theory of Feshbach.

The model Hamiltonian H_ of this paper is that which leéads
~to the shell model of light Ruclei ' - a
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The central potential U is chosen'fo be real, finite, and

spherically symmetric, although this last is not necessary.
The Hg therefore has both discrete and continuum A-particle
state . o

+ _ + | _ ‘ '
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which are simply'construdted from the bound and continuum states
of U. With the zero of energy defined for the state with A-1
nucleons in the lowest bound states of U and one particle in the

continuum state of zero energy, the discrete bound states of H
will occur at both negative and positive energy.

With a suitaBle
choice of H, a correspondence is established be%tween the states




¢ of H_ and those of H by an adiabatic transition from H_  to H.
The Regative energy (discrete) states of H_ generally Qvolve

- into the bound states .of H, and the discrefe positive energy
states of Ho go into the resonant continuum states of H.

The S-matrix element |
- + : . . L +
Spa = Xp IX3 D - 2m i 8(E, 'Eb_)<xb L7 1xa > (3)

. appears to come from an approximation in which wave functions
for ‘the initial and final states are approximated by eigenstates
of H . However, the correlations introduced into both the target
and gcattering wave function are-included through the reduced
transition operatorc”™, which satisfies

<= v+ V(EY-H)TNT V= H-H )+ (Energy Shift) (4)

<> For a proper choice of H_, the observed resonances in Sba
- will arise from single partic?e continuum resonances in the
. ¥lt or from virtual excitation of the discrete states of Ho'
Rese latter resonances are exhibited explicitly by
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E-E, +1i =+
aA

a .
where «” is a non-resonant effective interaction. The operator-7”
" does not contain the resonances arising from discrete state of
H_, but it does contain the short range modifications of the
two-nucleon interaction due to virtual transitions to the high
momentum continuum states of H This can be seen from the .

xg Mxa D = g WPl D+ § | (-5)_‘

equation for _A . ° a '
| oo <=V V(E R )T P A . (6)
(ju‘ where P_ projects on the continuum states of H,.

. The intermediate states X_  are simply linear superpositions _
of the finjte set of discrete Qtates |n> of H_ found by diagonali- -
zing (Ho-+ ). Since<” is complex the eigenva?ues E_+1ir /2 are
complex~and the adjoint gtates X_ are not complex conjugates of
the X, e If only the Reec? is use@ in the diagonalization to deter-
mine the X_ and Im is treated as a perturbation, then the inter-
mediate states are exactly those of the shell model. The effective
.interaction is associated with a particular choice of H_and is '
calgulable from the two-nucleon interaction. In the sh811 model
Re is treated as a phenomenological interaction which is the sum

R of two-body, energy independent, local potentials whose form is
to be determined from fitting the resonance energies. From Eq.
(8)- it is clear that <~ has these properties only in some approxi-
mation. Nevertheless, insight may be gained from this approach
if only a more complete calculation of the reaction amplitude
could be carried out with a minimum of additional approximations.
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A program for this calculation can,be developed by using
the dispersion relations satisfied byo” . These are summarized -
" in the single equation _ ' L
A ol .

F=v+Ib (T -u ) S (7))

c A0 c 4

. N
- In the approximation that lin<” << Re<” an equation for the ,
widths follows immediately from an optical theorem for Im«

I‘n(E) = 271% |<xn|Re.}1]xc+(E)>12 . (8)

In addition to the'imaginary'part of the energy contributed by
Im<? , a small energy shift is also produced. :

- e N2
aE = -z <X 1ImT|X DI°/(E - E) (9)

. “ .
This shift can be calculated from Re<” by using the same optical -
theorem to evaluate the off-diagonal matrix elements_ of Im<” .
Finally, the assumption of an energy-independent Res” can be
checked for consistency by using the equation C

v 4 1 -
: <xnlaef|xn> =X VX, D+ LdE' r (E')/(E-E") \19)
The principal value integral can bhe evaluated by using ‘the
expression for the width given in Eq. (8). <

A preliminary calculation based on this program has been

carried out by choosing a square well for the model potential .
“Us The depth of this well is different in each angular momentum
state. The depths were adjusted to yield the i%ngle particle
energies for the bound shell model levels in 0*+°. The crucial
spart of this whole analysis, however, is the treatment of the
d3/? state, which is actuai%y observed as a resonance in neutron
ahd“proton scattering on 0*®. Although it is usually convenient
for U to be the Hartree potential, this choice is neither
necessary nor convenient for the d 9 state [4]. Instead U is
chosen to have this state bound'neg{ zero energy. The difference
between U and the Hartree potential then generates a one-body
effective interaction . which shifts the resonance energy to
the observed value and p?odfses the 9bserved single particle
width. The resonances in 0 and F17 are completely described
by the virtual excitation of this state. :

The shell model gtates of O16 are to be found by diagonali-
zing H_+Re b+ Re & .. on the bound states .of H . These now
includ® statedPFormed 6& coupling a hole to the bdund d - State.
In the diagonalization J,. merely shifts this state to gég energy
usually chosen for it. ?heAparticle-hole interaction Re J  will
therefore be that usually found, except for differences introduced
by the use of the more realistic single particle wave functions .
for a finite potential instead of harmonic oscillator wave
functions. These preliminary calculations have been simplified
therefore by the use of the particle-hole interaction and the
expansion coefficients found by G. E. Brown and collaborators [S]ﬂ
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The widths are calculated with ReJ” = ReuZ;-+ Re Vo by
using these wave functions in Eq. (8). The particle-hole inter-
action enters because it permits the gxchange of energy which

enables the particle to leave. The <& enters because the d3/2 S

state is itself unstable. The two anplitudes add coherently
for two reasons. First, the d- ﬁtate has been shifted upward
and consequently broadened by .4 . Second, the particle-hole
width is affected by different shapes of the d-state wave
function, reflecting different choices of U, and the term in
7~ compensates to first order.

The widths and energy shifts due to damping gre shown in
Table I for the J = 1™ particle-hole states of ol From “the

-

“widths the energ( dependence of the interaction matrix element
10

as given by Eq has been calculated- for several levels and
is shown in the flgure. The small energy dependence of the

.widths and resonance energies of all these states shows that

this is a satisfactory shell model description of all the

. resonances includ1ng that at 24.2 MeV which i$ principally 63/?

coupled to Py/o and o holes. Nevertheless, the model
correctly 1nc{udes the very substantial conflguratlon inter-
action with the d3/2 state which is found in any con51stent
calculation. . . ,
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TABLE | ~ " - 751
r r r+7r A€, : |
ENERGY n P n P liLeveL suiFT
sev MeV peyv keV )
24.3 . .65 75 140 =42 -
22.2 30 .56 .86 %16
20.0 o 09 . 0o | o
7.6 A3 23 .36 +i2
13.7 ' o) .03 .03 o)

NEUTRON AND PROTON WIDTHS, TOTAL WIDTH, AND LEVEL SHIFT DUE TO DAM=
/PING FOR J=I" PARTICLE-HOLE STATES OF 0'C. | '
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FIGURE 1. THE ENERGY DEPENDENCE OF THE DIAGONAL MATRIY ELEMENT OF THE.
REAL PART OF THE EFFECTIVE MTERACTION FOR THREE J=I_ PARTICLE-HOLE -
STATES. : | ’
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